Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
1.
PLoS Biol ; 21(6): e3002097, 2023 06.
Artículo en Inglés | MEDLINE | ID: covidwho-20243340

RESUMEN

Identifying host genes essential for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has the potential to reveal novel drug targets and further our understanding of Coronavirus Disease 2019 (COVID-19). We previously performed a genome-wide CRISPR/Cas9 screen to identify proviral host factors for highly pathogenic human coronaviruses. Few host factors were required by diverse coronaviruses across multiple cell types, but DYRK1A was one such exception. Although its role in coronavirus infection was previously undescribed, DYRK1A encodes Dual Specificity Tyrosine Phosphorylation Regulated Kinase 1A and is known to regulate cell proliferation and neuronal development. Here, we demonstrate that DYRK1A regulates ACE2 and DPP4 transcription independent of its catalytic kinase function to support SARS-CoV, SARS-CoV-2, and Middle East Respiratory Syndrome Coronavirus (MERS-CoV) entry. We show that DYRK1A promotes DNA accessibility at the ACE2 promoter and a putative distal enhancer, facilitating transcription and gene expression. Finally, we validate that the proviral activity of DYRK1A is conserved across species using cells of nonhuman primate and human origin. In summary, we report that DYRK1A is a novel regulator of ACE2 and DPP4 expression that may dictate susceptibility to multiple highly pathogenic human coronaviruses.


Asunto(s)
COVID-19 , Internalización del Virus , Animales , Humanos , Enzima Convertidora de Angiotensina 2 , COVID-19/genética , COVID-19/metabolismo , Dipeptidil Peptidasa 4 , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , SARS-CoV-2/genética , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética
2.
Genome Biol Evol ; 15(6)2023 06 01.
Artículo en Inglés | MEDLINE | ID: covidwho-20235300

RESUMEN

Comparing the evolution of distantly related viruses can provide insights into common adaptive processes related to shared ecological niches. Phylogenetic approaches, coupled with other molecular evolution tools, can help identify mutations informative on adaptation, although the structural contextualization of these to functional sites of proteins may help gain insight into their biological properties. Two zoonotic betacoronaviruses capable of sustained human-to-human transmission have caused pandemics in recent times (SARS-CoV-1 and SARS-CoV-2), although a third virus (MERS-CoV) is responsible for sporadic outbreaks linked to animal infections. Moreover, two other betacoronaviruses have circulated endemically in humans for decades (HKU1 and OC43). To search for evidence of adaptive convergence between established and emerging betacoronaviruses capable of sustained human-to-human transmission (HKU1, OC43, SARS-CoV-1, and SARS-CoV-2), we developed a methodological pipeline to classify shared nonsynonymous mutations as putatively denoting homoplasy (repeated mutations that do not share direct common ancestry) or stepwise evolution (sequential mutations leading towards a novel genotype). In parallel, we look for evidence of positive selection and draw upon protein structure data to identify potential biological implications. We find 30 candidate mutations, from which 4 (codon sites 18121 [nsp14/residue 28], 21623 [spike/21], 21635 [spike/25], and 23948 [spike/796]; SARS-CoV-2 genome numbering) further display evolution under positive selection and proximity to functional protein regions. Our findings shed light on potential mechanisms underlying betacoronavirus adaptation to the human host and pinpoint common mutational pathways that may occur during establishment of human endemicity.


Asunto(s)
COVID-19 , Coronavirus del Síndrome Respiratorio de Oriente Medio , Animales , Humanos , SARS-CoV-2/genética , COVID-19/genética , Filogenia , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Mutación
3.
Dev Comp Immunol ; 133: 104443, 2022 08.
Artículo en Inglés | MEDLINE | ID: covidwho-20241503

RESUMEN

The COVID-19 pandemic is a wake-up call on the zoonotic viral spillover events and the need to be prepared for future outbreaks. Zoonotic RNA viruses like the Middle East respiratory syndrome coronavirus (MERS-CoV) are potential pathogens that could trigger the next pandemic. Dromedary camels are the only known animal source of MERS-CoV zoonotic infections, but little is known about the molecular antiviral response in this species. IFN-ß and other type-I interferons provide the first line of defense against invading pathogens in the host immune response. We identified the IFNB gene of the dromedary camel and all extant members of the family Camelidae. Camelid IFN-ß is unique with an even number of cysteines in the mature protein compared to other eutherian mammals with an odd number of cysteines. The viral mimetic poly(I:C) strongly induced IFN-ß expression in camel kidney cells. Induction of IFN-ß expression upon infection with camelpox virus was late and subdued when compared to poly(I:C) treatment. Prokaryotically expressed recombinant dromedary IFN-ß induced expression of IFN-responsive genes in camel kidney cells. Further, recombinant IFN-ß conferred antiviral resistance to camel kidney cells against the cytopathic effects of the camelpox virus, an endemic zoonotic pathogen. IFN-ß from this unique group of mammals will offer insights into antiviral immune mechanisms and aid in the development of specific antivirals against pathogens that have the potential to be the next zoonotic pandemic.


Asunto(s)
COVID-19 , Coronavirus del Síndrome Respiratorio de Oriente Medio , Animales , Antivirales , Camelus , Euterios , Humanos , Interferón beta/genética , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Pandemias , Zoonosis
4.
Sci Rep ; 13(1): 7906, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: covidwho-2325502

RESUMEN

The Envelope protein (E) is a structural protein encoded by the genome of SARS-CoV, SARS-CoV-2 and MERS-CoV Coronaviruses. It is poorly present in the virus but highly expressed in the host cell, with prominent role in virus assembly and virulence. The E protein possesses a PDZ-binding motif (PBM) at its C terminus that allows it to interact with host PDZ domain containing proteins. ZO1 is a key protein in assembling the cytoplasmic plaque of epithelial and endothelial Tight Junctions (TJs) as well as in determining cell differentiation, proliferation and polarity. The PDZ2 domain of ZO1 is known to interact with the Coronaviruses Envelope proteins, however the molecular details of such interaction have not been established. In this paper we directly measured, through Fluorescence Resonance Energy Transfer and Stopped-Flow methodology, the binding kinetics of the PDZ2 domain of ZO1 with peptides mimicking the C-terminal portion of the Envelope protein from SARS-CoV, SARS-CoV-2 and MERS-CoV in different ionic strength conditions. Interestingly, the peptide mimicking the E protein from MERS-CoV display much higher microscopic association rate constant with PDZ2 compared to SARS-CoV and SARS-CoV-2 suggesting a stronger contribution of electrostatic forces in the early events of binding. A comparison of thermodynamic and kinetic data obtained at increasing ionic strengths put in evidence different contribution of electrostatics in the recognition and complex formation events for the three peptides. Our data are discussed under the light of available structural data of PDZ2 domain of ZO1 and of previous works about these protein systems.


Asunto(s)
COVID-19 , Coronavirus del Síndrome Respiratorio de Oriente Medio , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Humanos , SARS-CoV-2/metabolismo , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Coronavirus del Síndrome Respiratorio de Oriente Medio/metabolismo , Electricidad Estática , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Péptidos/química , Unión Proteica
5.
Appl Microbiol Biotechnol ; 107(10): 3329-3339, 2023 May.
Artículo en Inglés | MEDLINE | ID: covidwho-2295184

RESUMEN

Pandemics like SARS-Cov-2 very frequently have their origin in different animals and in particular herds of camels could be a source of zoonotic diseases. This study took advantage on a highly sensitive and adaptable method for the fast and reliable detection of viral antibodies in camels using low-cost equipment. Magnetic nanoparticles (MNP) have high variability in their functionalization with different peptides and proteins. We confirm that 3-aminopropyl triethoxysilane (APTES)-coated MNP could be functionalized with viral proteins. The protein loading could be confirmed by simple loading controls using FACS-analysis (p < 0.05). Complementary combination of antigen and antibody yields in a significant signal increase could be proven by both FACS and COMPASS. However, COMPASS needs only a few seconds for the measurement. In COMPASS, the phase φn on selected critical point of the fifth higher harmonic (n = 5th). Here, positive sera display highly significant signal increase over the control or negative sera. Furthermore, a clear distinction could be made in antibody detection as an immune response to closely related viruses (SARS-CoV2 and MERS). Using modified MNPs along with COMPASS offers a fast and reliable method that is less cost intensive than current technologies and offers the possibility to be quickly adapted in case of new occurring viral infections. KEY POINTS: • COMPASS (critical offset magnetic particle spectroscopy) allows the fast detection of antibodies. • Magnetic nanoparticles can be adapted by exchange of the linked bait molecule. • Antibodies could be detected in camel sera without washing steps within seconds.


Asunto(s)
COVID-19 , Coronavirus del Síndrome Respiratorio de Oriente Medio , Animales , Anticuerpos Antivirales , Camelus , ARN Viral , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , SARS-CoV-2 , Análisis Espectral , Fenómenos Magnéticos
7.
Adv Exp Med Biol ; 1407: 133-151, 2023.
Artículo en Inglés | MEDLINE | ID: covidwho-2286093

RESUMEN

Seven coronaviruses have been identified that can infect humans, four of which usually cause mild symptoms, including HCoV-229E, HCoV-NL63, HCoV-OC43, and HCoV-HKU1, three of which are lethal coronaviruses, named severe acute respiratory syndrome coronavirus, Middle East respiratory syndrome coronavirus, and severe acute respiratory syndrome coronavirus 2. Pseudotyped virus is an important tool in the field of human coronavirus research because it is safe, easy to prepare, easy to detect, and highly modifiable. In addition to the application of pseudotyped viruses in the study of virus infection mechanism, vaccine, and candidate antiviral drug or antibody evaluation and screening, pseudotyped viruses can also be used as an important platform for further application in the prediction of immunogenicity and antigenicity after virus mutation, cross-species transmission prediction, screening, and preparation of vaccine strains with better broad spectrum and antigenicity. Meanwhile, as clinical trials of various types of vaccines and post-clinical studies are also being carried out one after another, the establishment of a high-throughput and fully automated detection platform based on SARS-CoV-2 pseudotyped virus to further reduce the cost of detection and manual intervention and improve the efficiency of large-scale detection is also a demand for the development of SARS-CoV-2 pseudotyped virus.


Asunto(s)
COVID-19 , Coronavirus Humano 229E , Coronavirus del Síndrome Respiratorio de Oriente Medio , Humanos , Pseudotipado Viral , SARS-CoV-2/genética , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Coronavirus Humano 229E/genética
8.
Front Cell Infect Microbiol ; 12: 1081370, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-2268786

RESUMEN

Coronaviruses (CoVs) continuously evolve, crossing species barriers and spreading across host ranges. Over the last two decades, several CoVs (HCoV-229E, HCoV-NL63, HCoV-HKU1, HCoV-OC43, SARS-CoV, MERS-CoV, and SARS-CoV-2) have emerged in animals and mammals, causing significant economic and human life losses. Due to CoV cross-species transmission and the evolution of novel viruses, it is critical to identify their natural reservoiurs and the circumstances under which their transmission occurs. In this review, we use genetic and ecological data to disentangle the evolution of various CoVs in wildlife, humans, and domestic mammals. We thoroughly investigate several host species and outline the epidemiology of CoVs toward specific hosts. We also discuss the cross-species transmission of CoVs at the interface of wildlife, animals, and humans. Clarifying the epidemiology and diversity of species reservoirs will significantly impact our ability to respond to the future emergence of CoVs in humans and domestic animals.


Asunto(s)
COVID-19 , Coronavirus Humano 229E , Coronavirus del Síndrome Respiratorio de Oriente Medio , Animales , Humanos , SARS-CoV-2/genética , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Especificidad del Huésped , Animales Salvajes , Mamíferos
9.
ISME J ; 17(4): 549-560, 2023 04.
Artículo en Inglés | MEDLINE | ID: covidwho-2268756

RESUMEN

Exploring wild reservoirs of pathogenic viruses is critical for their long-term control and for predicting future pandemic scenarios. Here, a comparative in vitro infection analysis was first performed on 83 cell cultures derived from 55 mammalian species using pseudotyped viruses bearing S proteins from SARS-CoV-2, SARS-CoV, and MERS-CoV. Cell cultures from Thomas's horseshoe bats, king horseshoe bats, green monkeys, and ferrets were found to be highly susceptible to SARS-CoV-2, SARS-CoV, and MERS-CoV pseudotyped viruses. Moreover, five variants (del69-70, D80Y, S98F, T572I, and Q675H), that beside spike receptor-binding domain can significantly alter the host tropism of SARS-CoV-2. An examination of phylogenetic signals of transduction rates revealed that closely related taxa generally have similar susceptibility to MERS-CoV but not to SARS-CoV and SARS-CoV-2 pseudotyped viruses. Additionally, we discovered that the expression of 95 genes, e.g., PZDK1 and APOBEC3, were commonly associated with the transduction rates of SARS-CoV, MERS-CoV, and SARS-CoV-2 pseudotyped viruses. This study provides basic documentation of the susceptibility, variants, and molecules that underlie the cross-species transmission of these coronaviruses.


Asunto(s)
COVID-19 , Quirópteros , Coronavirus del Síndrome Respiratorio de Oriente Medio , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Animales , Chlorocebus aethiops , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , SARS-CoV-2/genética , Filogenia , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Hurones
10.
Int Immunopharmacol ; 118: 109998, 2023 May.
Artículo en Inglés | MEDLINE | ID: covidwho-2265388

RESUMEN

BACKGROUND: The Middle East respiratory syndrome coronavirus (MERS-CoV) is a pathogen associated with an acute respiratory infection that has a high mortality rate in humans. It was first identified in June of 2012 in the Arabian Peninsula. The success of the COVID-19 vaccines has shown that it is possible to take advantage of medical and scientific advances to produce safe and effective vaccines for coronaviruses. This study aimed to examine the safety and immunogenicity of MERS-CoV vaccines. METHODS: The research method Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) was used as the guideline for this study. RevMan 5.4 software was used to perform a meta-analysis of the included studies. The safety was assessed by recording adverse events following vaccination, and the immunogenicity was assessed by using seroconversion. RESULTS: The study included five randomized controlled trials that met the inclusion criteria after screening. The studies had 173 participants and were performed in four countries. The vaccines examined were the ChAdOx1 MERS vaccine, MVA-MERS-S vaccine, and GLS-5300 DNA MERS-CoV vaccine. The meta-analysis showed no significant differences in local adverse effects (all local adverse effects and pain) or systemic adverse effects (all systemic adverse effects, fatigue, and headache) among participants in groups receiving a high-dose vaccine or a low-dose vaccine. There were, however, higher levels of seroconversion in high-dose groups than in low-dose groups (OR 0.16 [CI 0.06, 0.42, p = 0.0002]). CONCLUSION: The findings showed that high doses of current MERS-CoV vaccine candidates conferred better immunogenicity than low doses and that there were no differences in the safety of the vaccines.


Asunto(s)
COVID-19 , Coronavirus del Síndrome Respiratorio de Oriente Medio , Humanos , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Vacunas contra la COVID-19 , Anticuerpos Antivirales , ADN
11.
Int J Infect Dis ; 131: 87-94, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: covidwho-2250705

RESUMEN

OBJECTIVES: The World Health Organization priority zoonotic pathogen Middle East respiratory syndrome (MERS) coronavirus (CoV) has a high case fatality rate in humans and circulates in camels worldwide. METHODS: We performed a global analysis of human and camel MERS-CoV infections, epidemiology, genomic sequences, clades, lineages, and geographical origins for the period January 1, 2012 to August 3, 2022. MERS-CoV Surface gene sequences (4061 bp) were extracted from GenBank, and a phylogenetic maximum likelihood tree was constructed. RESULTS: As of August 2022, 2591 human MERS cases from 26 countries were reported to the World Health Organization (Saudi Arabia, 2184 cases, including 813 deaths [case fatality rate: 37.2%]) Although declining in numbers, MERS cases continue to be reported from the Middle East. A total of 728 MERS-CoV genomes were identified (the largest numbers were from Saudi Arabia [222: human = 146, camels = 76] and the United Arab Emirates [176: human = 21, camels = 155]). A total of 501 'S'-gene sequences were used for phylogenetic tree construction (camels [n = 264], humans [n = 226], bats [n = 8], other [n=3]). Three MERS-CoV clades were identified: clade B, which is the largest, followed by clade A and clade C. Of the 462 clade B lineages, lineage 5 was predominant (n = 177). CONCLUSION: MERS-CoV remains a threat to global health security. MERS-CoV variants continue circulating in humans and camels. The recombination rates indicate co-infections with different MERS-CoV lineages. Proactive surveillance of MERS-CoV infections and variants of concern in camels and humans worldwide, and development of a MERS vaccine, are essential for epidemic preparedness.


Asunto(s)
Infecciones por Coronavirus , Coronavirus del Síndrome Respiratorio de Oriente Medio , Animales , Humanos , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Camelus , Filogenia , Medio Oriente/epidemiología , Arabia Saudita/epidemiología , Genómica , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/veterinaria
12.
Cell ; 186(4): 850-863.e16, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: covidwho-2239711

RESUMEN

It is unknown whether pangolins, the most trafficked mammals, play a role in the zoonotic transmission of bat coronaviruses. We report the circulation of a novel MERS-like coronavirus in Malayan pangolins, named Manis javanica HKU4-related coronavirus (MjHKU4r-CoV). Among 86 animals, four tested positive by pan-CoV PCR, and seven tested seropositive (11 and 12.8%). Four nearly identical (99.9%) genome sequences were obtained, and one virus was isolated (MjHKU4r-CoV-1). This virus utilizes human dipeptidyl peptidase-4 (hDPP4) as a receptor and host proteases for cell infection, which is enhanced by a furin cleavage site that is absent in all known bat HKU4r-CoVs. The MjHKU4r-CoV-1 spike shows higher binding affinity for hDPP4, and MjHKU4r-CoV-1 has a wider host range than bat HKU4-CoV. MjHKU4r-CoV-1 is infectious and pathogenic in human airways and intestinal organs and in hDPP4-transgenic mice. Our study highlights the importance of pangolins as reservoir hosts of coronaviruses poised for human disease emergence.


Asunto(s)
Infecciones por Coronavirus , Coronavirus , Dipeptidil Peptidasa 4 , Pangolines , Animales , Humanos , Ratones , Quirópteros , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/virología , Dipeptidil Peptidasa 4/genética , Dipeptidil Peptidasa 4/metabolismo , Endopeptidasas/metabolismo , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Coronavirus del Síndrome Respiratorio de Oriente Medio/metabolismo , Péptido Hidrolasas/metabolismo , Receptores Virales/metabolismo , Internalización del Virus , Coronavirus/fisiología
13.
Biochemistry (Mosc) ; 87(12): 1662-1678, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: covidwho-2233322

RESUMEN

New coronavirus infection causing COVID-19, which was first reported in late 2019 in China, initiated severe social and economic crisis that affected the whole world. High frequency of the errors in replication of RNA viruses, zoonotic nature of transmission, and high transmissibility allowed betacoronaviruses to cause the third pandemic in the world since the beginning of 2003: SARS-CoV in 2003, MERS-CoV in 2012, and SARS-CoV-2 in 2019. The latest pandemic united scientific community and served as a powerful impetus in the study of biology of coronaviruses: new routes of virus penetration into the human cells were identified, features of the replication cycle were studied, and new functions of coronavirus proteins were elucidated. It should be recognized that the pandemic was accompanied by the need to obtain and publish results within a short time, which led to the emergence of an array of conflicting data and low reproducibility of research results. We systematized and analyzed scientific literature, filtered the results according to reliability of the methods of analysis used, and prepared a review describing molecular mechanisms of functioning of the SARS-CoV-2 coronavirus. This review considers organization of the genome of the SARS-CoV-2 virus, mechanisms of its gene expression and entry of the virus into the cell, provides information on key mutations that characterize different variants of the virus, and their contribution to pathogenesis of the disease.


Asunto(s)
COVID-19 , Coronavirus del Síndrome Respiratorio de Oriente Medio , Humanos , SARS-CoV-2 , Reproducibilidad de los Resultados , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Biología
14.
Int J Mol Sci ; 24(2)2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: covidwho-2232081

RESUMEN

Betacoronaviruses have already troubled humanity more than once. In 2002-2003 and 2012, the SARS-CoV and MERS-CoV, respectively, caused outbreaks of respiratory syndromes with a fatal outcome. The spread of the SARS-CoV-2 coronavirus has become a pandemic. These three coronaviruses belong to the genus Betacoronavirus and have a zoonotic origin. The emergence of new coronavirus infections in the future cannot be ruled out, and vaccination is the main way to prevent the spread of the infection. Previous experience in the development of vaccines against SARS and MERS has helped to develop a number of vaccines against SARS-CoV-2 in a fairly short time. Among them, there are quite a few recombinant protein vaccines, which seem to be very promising in terms of safety, minimization of side effects, storage and transportation conditions. The problem of developing a universal betacoronavirus vaccine is also still relevant. Here, we summarize the information on the designing of vaccines based on recombinant proteins against highly pathogenic human betacoronaviruses SARS-CoV, MERS-CoV and SARS-CoV-2.


Asunto(s)
COVID-19 , Coronavirus del Síndrome Respiratorio de Oriente Medio , Humanos , SARS-CoV-2 , COVID-19/prevención & control , Vacunas contra la COVID-19/genética , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Proteínas Recombinantes/genética , Vacunas Sintéticas
15.
BMC Vet Res ; 18(1): 124, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1840993

RESUMEN

BACKGROUND: Coronaviruses have the potential to cross species barriers. To learn the molecular intersections among the most common coronaviruses of domestic and close-contact animals, we analyzed representative coronavirus genera infecting mouse, rat, rabbit, dog, cat, cattle, white-tailed deer, swine, ferret, mink, alpaca, Rhinolophus bat, dolphin, whale, chicken, duck and turkey hosts; reference or complete genome sequences were available for most of these coronavirus genera. Protein sequence alignments and phylogenetic trees were built for the spike (S), envelope (E), membrane (M) and nucleocapsid (N) proteins. The host receptors and enzymes aminopeptidase N (APN), angiotensin converting enzyme 2 (ACE2), sialic acid synthase (SAS), transmembrane serine protease 2 (TMPRSS2), dipeptidyl peptidase 4 (DPP4), cathepsin L (and its analogs) and furin were also compared. RESULTS: Overall, the S, E, M, and N proteins segregated according to their viral genera (α, ß, or γ), but the S proteins of alphacoronaviruses lacked conservation of phylogeny. Interestingly, the unique polybasic furin cleavage motif found in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) but not in severe acute respiratory syndrome coronavirus (SARS-CoV) or Middle East respiratory syndrome coronavirus (MERS-CoV) exists in several ß-coronaviruses and a few α- or γ-coronaviruses. Receptors and enzymes retained host species-dependent relationships with one another. Among the hosts, critical ACE2 residues essential for SARS-CoV-2 spike protein binding were most conserved in white-tailed deer and cattle. CONCLUSION: The polybasic furin cleavage motif found in several ß- and other coronaviruses of animals points to the existence of an intermediate host for SARS-CoV-2, and it also offers a counternarrative to the theory of a laboratory-engineered virus. Generally, the S proteins of coronaviruses show crossovers of phylogenies indicative of recombination events. Additionally, the consistency in the segregation of viral proteins of the MERS-like coronavirus (NC_034440.1) from pipistrelle bat supports its classification as a ß-coronavirus. Finally, similarities in host enzymes and receptors did not always explain natural cross-infections. More studies are therefore needed to identify factors that determine the cross-species infectivity of coronaviruses.


Asunto(s)
COVID-19 , Enfermedades de los Bovinos , Ciervos , Enfermedades de los Perros , Coronavirus del Síndrome Respiratorio de Oriente Medio , Enfermedades de los Roedores , Enfermedades de los Porcinos , Animales , COVID-19/veterinaria , Bovinos , Perros , Hurones , Ratones , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Filogenia , Conejos , Ratas , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Porcinos
16.
Emerg Microbes Infect ; 12(1): e2164218, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: covidwho-2187798

RESUMEN

Middle East respiratory syndrome coronavirus (MERS-CoV) is enzootic in dromedary camels and causes zoonotic infection and disease in humans. Although over 80% of the global population of infected dromedary camels are found in Africa, zoonotic disease had only been reported in the Arabia Peninsula and travel-associated disease has been reported elsewhere. In this study, genetic diversity and molecular epidemiology of MERS-CoV in dromedary camels in Ethiopia were investigated during 2017-2020. Of 1766 nasal swab samples collected, 61 (3.5%) were detected positive for MERS-CoV RNA. Of 484 turbinate swab samples collected, 10 (2.1%) were detected positive for MERS-CoV RNA. Twenty-five whole genome sequences were obtained from these MERS-CoV positive samples. Phylogenetically, these Ethiopian camel-originated MERS-CoV belonged to clade C2, clustering with other East African camel strains. Virus sequences from camel herds clustered geographically while in an abattoir, two distinct phylogenetic clusters of MERS-CoVs were observed in two sequential sampling collections, which indicates the greater genetic diversity of MERS-CoV in abattoirs. In contrast to clade A and B viruses from the Arabian Peninsula, clade C camel-originated MERS-CoV from Ethiopia had various nucleotide insertions and deletions in non-structural gene nsp3, accessory genes ORF3 and ORF5 and structural gene N. This study demonstrates the genetic instability of MERS-CoV in dromedaries in East Africa, which indicates that the virus is still actively adapting to its camel host. The impact of the observed nucleotide insertions and deletions on virus evolution, viral fitness, and zoonotic potential deserves further study.


Asunto(s)
Infecciones por Coronavirus , Coronavirus del Síndrome Respiratorio de Oriente Medio , Animales , Humanos , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Camelus , Filogenia , Etiopía/epidemiología , Epidemiología Molecular , Viaje , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/veterinaria , Zoonosis/epidemiología , Variación Genética , ARN
17.
mBio ; 14(1): e0313622, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: covidwho-2193470

RESUMEN

Coronaviruses (CoVs) of genera α, ß, γ, and δ encode proteins that have a PDZ-binding motif (PBM) consisting of the last four residues of the envelope (E) protein (PBM core). PBMs may bind over 400 cellular proteins containing PDZ domains (an acronym formed by the combination of the first letter of the names of the three first proteins where this domain was identified), making them relevant for the control of cell function. Three highly pathogenic human CoVs have been identified to date: severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2. The PBMs of the three CoVs were virulence factors. SARS-CoV mutants in which the E protein PBM core was replaced by the E protein PBM core from virulent or attenuated CoVs were constructed. These mutants showed a gradient of virulence, depending on whether the alternative PBM core introduced was derived from a virulent or an attenuated CoV. Gene expression patterns in the lungs of mice infected with SARS-CoVs encoding each of the different PBMs were analyzed by RNA sequencing of infected lung tissues. E protein PBM of SARS-CoV and SARS-CoV-2 dysregulated gene expression related to ion transport and cell homeostasis. Decreased expression of cystic fibrosis transmembrane conductance regulator (CFTR) mRNA, essential for alveolar edema resolution, was shown. Reduced CFTR mRNA levels were associated with edema accumulation in the alveoli of mice infected with SARS-CoV and SARS-CoV-2. Compounds that increased CFTR expression and activity, significantly reduced SARS-CoV-2 growth in cultured cells and protected against mouse infection, suggesting that E protein virulence is mediated by a decreased CFTR expression. IMPORTANCE Three highly pathogenic human CoVs have been identified: SARS-CoV, MERS-CoV, and SARS-CoV-2. The E protein PBMs of these three CoVs were virulence factors. Gene expression patterns associated with the different PBM motifs in the lungs of infected mice were analyzed by deep sequencing. E protein PBM motif of SARS-CoV and SARS-CoV-2 dysregulated the expression of genes related to ion transport and cell homeostasis. A decrease in the mRNA expression of the cystic fibrosis transmembrane conductance regulator (CFTR), which is essential for edema resolution, was observed. The reduction of CFTR mRNA levels was associated with edema accumulation in the lungs of mice infected with SARS-CoV-2. Compounds that increased the expression and activity of CFTR drastically reduced the production of SARS-CoV-2 and protected against its infection in a mice model. These results allowed the identification of cellular targets for the selection of antivirals.


Asunto(s)
COVID-19 , Coronavirus del Síndrome Respiratorio de Oriente Medio , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Animales , Ratones , Humanos , SARS-CoV-2/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Pulmón/metabolismo , ARN Mensajero
18.
Mol Immunol ; 153: 212-225, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: covidwho-2165717

RESUMEN

The last two decades have seen the emergence of three highly pathogenic coronaviruses with zoonotic origins, which prompted immediate attention to the underlying cause and prevention of future outbreaks. Intensification of camel husbandry in the Middle East has resulted in increased human-camel interactions, which has led to the spread of potentially zoonotic viruses with human spillover risks like MERS-coronavirus, camelpox virus, etc. Type-I interferons function as the first line of defense against invading viruses and are pivotal for limiting viral replication and immune-mediated pathologies. Seven novel dromedary camel interferon delta genes were identified and cloned. Functional characterization of this novel class of IFNs from the mammalian suborder tylopoda is reported for the first time. The camel interferon-delta proteins resemble the reported mammalian counterparts in sequence similarity, conservation of cysteines, and phylogenetic proximity. Prokaryotically expressed recombinant camel interferon-δ1 induced IFN-stimulated gene expression and also exerted antiviral action against camelpox virus, an endemic zoonotic virus. The pre-treatment of camel kidney cells with recombinant camel IFN-δ1 increased cell survival and reduced camelpox virus in a dose-dependent manner. The identification of novel IFNs from species with zoonotic spillover risk such as camels, and evaluating their antiviral effects in-vitro will play a key role in improving immunotherapies against viruses and expanding the arsenal to combat emerging zoonotic pathogens.


Asunto(s)
Camelus , Interferón Tipo I , Animales , Camelus/genética , Camelus/inmunología , Interferón Tipo I/genética , Interferón Tipo I/inmunología , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Filogenia
19.
Infect Genet Evol ; 108: 105399, 2023 03.
Artículo en Inglés | MEDLINE | ID: covidwho-2165704

RESUMEN

Bats remains as reservoirs for highly contagious and pathogenic viral families including the Coronaviridae, Filoviridae, Paramyxoviruses, and Rhabdoviridae. Spill over of viral species (SARS-CoV, MERS-CoV & SARS-CoV2) from bats (as a possible potential reservoirs) have recently caused worst outbreaks. Early detection of viral species of pandemic potential in bats is of great importance. We detected beta coronaviruses in the studied bats population (positive samples from Rousettus leschenaultia) and performed the evolutionary analysis, amino acid sequence alignment, and analysed the 3-Dimentional protein structure. We detected the coronaviruses for the first time in bats from Pakistan. Our analysis based on RdRp partial gene sequencing suggest that the studied viral strains are closely related to MERS-CoV-like viruses as they exhibit close structure similarities (with few substitutions) and also observed a substitution in highly conserved SDD in the palm subdomain of motif C to ADD, when compared with earlier reported viral strains. It could be concluded from our study that coronaviruses are circulating among the bat's population in Pakistan. Based on the current findings, we suggest large scale screening procedures of bat virome across the country to detect potential pathogenic viral species.


Asunto(s)
COVID-19 , Quirópteros , Coronaviridae , Coronavirus del Síndrome Respiratorio de Oriente Medio , Virus , Humanos , Animales , ARN Viral , Pakistán/epidemiología , Filogenia , COVID-19/genética , SARS-CoV-2/genética , Coronaviridae/genética , Virus/genética , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Genoma Viral
20.
mBio ; 13(5): e0241522, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: covidwho-2088413

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has killed over 6 million individuals worldwide and continues to spread in countries where vaccines are not yet widely available or its citizens are hesitant to become vaccinated. Therefore, it is critical to unravel the molecular mechanisms that allow SARS-CoV-2 and other coronaviruses to infect and overtake the host machinery of human cells. Coronavirus replication triggers endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR), a key host cell pathway widely believed to be essential for viral replication. We examined the master UPR sensor IRE1α kinase/RNase and its downstream transcription factor effector XBP1s, which is processed through an IRE1α-mediated mRNA splicing event, in human lung-derived cells infected with betacoronaviruses. We found that human respiratory coronavirus OC43 (HCoV-OC43), Middle East respiratory syndrome coronavirus (MERS-CoV), and murine coronavirus (MHV) all induce ER stress and strongly trigger the kinase and RNase activities of IRE1α as well as XBP1 splicing. In contrast, SARS-CoV-2 only partially activates IRE1α through autophosphorylation, but its RNase activity fails to splice XBP1. Moreover, while IRE1α was dispensable for replication in human cells for all coronaviruses tested, it was required for maximal expression of genes associated with several key cellular functions, including the interferon signaling pathway, during SARS-CoV-2 infection. Our data suggest that SARS-CoV-2 actively inhibits the RNase of autophosphorylated IRE1α, perhaps as a strategy to eliminate detection by the host immune system. IMPORTANCE SARS-CoV-2 is the third lethal respiratory coronavirus, after MERS-CoV and SARS-CoV, to emerge this century, causing millions of deaths worldwide. Other common coronaviruses such as HCoV-OC43 cause less severe respiratory disease. Thus, it is imperative to understand the similarities and differences among these viruses in how each interacts with host cells. We focused here on the inositol-requiring enzyme 1α (IRE1α) pathway, part of the host unfolded protein response to virus-induced stress. We found that while MERS-CoV and HCoV-OC43 fully activate the IRE1α kinase and RNase activities, SARS-CoV-2 only partially activates IRE1α, promoting its kinase activity but not RNase activity. Based on IRE1α-dependent gene expression changes during infection, we propose that SARS-CoV-2 prevents IRE1α RNase activation as a strategy to limit detection by the host immune system.


Asunto(s)
COVID-19 , Coronavirus del Síndrome Respiratorio de Oriente Medio , Animales , Ratones , Humanos , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Estrés del Retículo Endoplásmico/genética , SARS-CoV-2/genética , Inositol , Proteínas Serina-Treonina Quinasas/genética , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Coronavirus del Síndrome Respiratorio de Oriente Medio/metabolismo , Ribonucleasas/genética , Factores de Transcripción , ARN Mensajero , Pulmón/metabolismo , Interferones , Proteína 1 de Unión a la X-Box/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA